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ABSTRACT

A septum and an impedance matching post are used as a beam equalizer

in an open-ended waveguide-feed for reflectors used in satellite communica-

tions systems. The performance of this design over a frequency band is

evaluated using a spectral domain approach. The computed radiation

patterns in the E- and H-planes, as well as the results for the impedance

match, are presented in the paper.

II.
TAB
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I. Introduction

Rectangular waveguide array feeds for reflector antennas play an

important role in the design of satellite communication systems. To make

the radiation pattern more symmetric in the E- and H-planes of the feed,

a beam equalizer is needed. The design used in this case is a septum placed

across the mouth of the waveguide such that the aperture distribution is

reshaped to satisfy the new boundary conditions imposed by the septum.

Consequently, the H-plane radiation pattern is narrowed to approach the

E-plane pattern, thereby achieving the beam equalizing effect. However,

the introduction of such a septum creates an impedance mismatch problem for

the feed. To alleviate this problem, a matching post is placed behind the

septum so that the reflection back into the waveguide is minimized.

The performance of this design over the desired frequency band is

evaluated using a spectral domain approach, or more specifically, Galerkin's

method applied in the spectral domain [1]. The scattered fields on both

sides of the beam equalizer are represented in terms of their Fourier

transforms or spectra which can be related to the induced surface currents

on the septum and the post. These unknown induced currents are expanded in

terms of known basis functions and unknown coefficients. A matrix equation

for the unknown coefficients is derived by applying the boundary conditions,

and the moment method is then employed in the spectral domain to solve for

these unknown coefficients, which in turn give the answer to the unknown

scattered fields. The scattered fields for all modes obtained in this

manner are then used to compute the reflection and transmission coefficients

for each mode, propagating or attenuated. A tacit assumption made is that

the scattered field on the open-ended side of the waveguide is the same as
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that in an infinitely long waveguide containing the beam equalizer. In

other words, the truncation effects of the waveguide are ignored in

this analysis. The transmission coefficients are used to weight the

radiation field due to each mode of waveguide and the superimposed

radiation pattern is computed. The reflection coefficients are used

to assess the impedance matching performance. Numerical results indicate

that the E- and H-plane princii"Ally polarized patterns are equalized

extremely well over the entire frequency band of operation and that the

impedance matching is also quite satisfactory.

II. Analysis

The geometry of the waveguide with septum and post is shown in

Figure 1. Since the cross-section of the post is very small, the post

is modeled as a narrow strip to simplify the analysis. The incident

field is propagating in the z-direction towards the post as shown

schematically in Figure 1. There are surface currents induced on the

septum and the post due to the incident field. The scattered fields

radiated by these induced surface currents then propagate in both the

z-direction and the -z-direction, giving rise to the transmitted and

the reflected waves, respectively. In the following analysis, the

truncation effects of the waveguide at z-0 are ignored, as though the

post and septum were located in an infinite guide.

The incident field in the waveguide can be expressed in terms of

TE and TM modes in the usual manner:

TE modes:

nmf
W

E ijh nm---- cos (I x) sin(" y) exp (-JB z)xk
x ri k ri

J__ __ _
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POST SEPTUM
um7 _ _

t C Xb/

0 z z x

LONGITUDINAL-SECTION CROSS -SECT ION

a =1.3X
b 1.3 x

c 0.25 X f =3.95 GHz

d IS VARIABLE X =0.076 m

t =0.062 X

Figure 1. Geometry of the waveguide !qith septum and post.
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nir
i "a ( nt mir
E -Jhn Z sin -X) cos (-y) exp (-jO z)

y m E a b rimC

E -o0
z

Hi  _E /ZTx y TE

y X. TE

i nit mWZH i- h cos (-x) cos (-" y) exp (-jB Z) (la)

TM modes:

rimt
"s -j e cos OB (-y) exp (-JS z)

C

Ei nit emo it )ex

E i - e sin(-x) sin (Mv y) exp (-jn z)

Hi  -Ei /Z ; Hi -E i / z H 0 (Ib)x y TNy x TMz

2 2
where k2 " (2_) mi ; 2 k2 -k 2  k2 = W2 Izc a (-)nm C

ZTE -ul/nm ; ZTM W a /(we)

The scattered fields can be expressed in terms of their Fourier

spectra, which are in turn related to the Fourier spectra of the induced

surface currents. The Fourier spectra of the induced surface currents
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are then solved for by the moment method applied in the transformed,

i.e., the spectral domain. Specifically, Galerkin's method is used

in the present analysis - the same basis functions are used as testing

functions in the moment method. Upon solving the spectra of the

induced surface currents, the scattered fields can be obtained in

a straightforward manner. The analytic details follow.

Corresponding to each incident mode, the scattered fields E andx

ES can be represented in the following form:
z

E (b/2<y<b) sin[y (b-y)I

-cos ( x) f f (a) exp(-jaz)da,

iEx (0<y<b/2) sinYn y J
LxC

(2)

(b/2 <Yb y< Sinl[Yn(b-Y) lE: (b/<yb) 
sin~sin (a  x) f gn(a) L J exp(-az)ds

where

'y ff k 2 - (nit )2a - a21 (3)

and f n(a), gn (a) are the unknown Fourier spectra to be determined. The

expression for E is then obtained from the Maxwell's equation V - E - 0,y

givingK ; (b/2 <y < b si (nr x os[Y n(b-y)] x ( J z d1 n (4)

S(0<y<b/2) Cos Yy j



w i t h 
n a

h n(ai) -) n (ci n (5)~ c

n

Now that we have Ewe can find H by using the curl-of-E Maxwell's equation.

However, in anticipation of relating the H-field with the induced surface

currents on the septum and the strip, only the x- and the z- components of

the H-field are computed, giving

[us (b/2 < Y < b)

I 1 - -sin(- x) f~ exp(-Jciz)

J -00

[-Y gna)+ ici h n(c)] cos [n y )

nnn n

H5 (b/2< y <b)
z

c - ca x) I exp(-jciz)LH (O < y< b/2J a

Fynfn(ai) + n!) h' (ai)] Co [n (b-y)Tjdc

I- (nfn(ai) - @) h (ai)] cos y y JL a nn
(6)
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The induced currents on the septum and the strip can also be expressed

in terms of Fourier spectra. For each incident mode, we have

J3 (x,y b/2, z) sin x) f j (a) exp(-jaz) da

- (7)

x (x,y b/2, z) [os(- x) f j(a) exp(-jaz) da

where j z(a) and j x(a) are Fourier spectra of the induced surface currents

to be related to the spectra of the scattered H-field. This relationship

is obtained by enforcing boundary conditions on the septum and the strip

and can be written as

-H (y W rn (b/2+ e)) +H (y - 1i (b/2 - e)) F ](8
- (8)

H (y -i (b/2 + )) - Hz (y - -n (b/2 -))

where e is a positive quantity.

Substitution of (6) and (7) into (8) leads to the following algebraic

equations:

Cos ,-) n  h(a) - jah (a)] j (a)

n U n z

- (9)

-2 y nbcos n ( f (a) + (-) h (a)] J (a)
jWU 2 n an x
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Substituting hn(a) from (5) into (9) and manipulating the resulting equations

leads to the following matrix equation for f (a) and gn(a) in terms of the

transform domain currents ji(a) and j (a).

S2 n22
n) k r _ f (a) J(a)

-Ja a2L a2 -njn

= ynb (10)

k2 -z 2  nr 2cos (---)k2_C ja(=-') go(a) :I(C)

a n

An inversion of (10) gives

f(a) -j(nr k 2_ 2 (a)

2 -y- I (

2k Y Cos* ~ ~ 2 2 i
9 a n 2 k 2  a 2 jM- i¢(

n a
L L) LX

If the Fourier transforms of the currents j (a) and jx () are known, we

can obtain f (a) and gn(a) from (11). Subsequently, (2), (4) and (6) can
n f

be used to derive the scattered fields by substituting for fn (a) and gn(a)

in those expressions. The remaining task is to solve for the transform

currents J (a) and ix (a), using the Galerkin's method applied in the

transform domain.

First we express the corresponding space domain currents in terms of

a linear combination of a set of suitable basis functions with unknown

coefficients.
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(x,z) cos ( u AP(z) + UtAOP0Cz)]
x a ca-xii

L
Jz(X, sin (nL-) [Uc E B q (z))

Cos (T-ax) Jx(z)

sin( (ir ) Jz(z) (12)

where Uc and Ut are truncation functions on the septum and the strip,

respectively,

-C<Z<0,~

c +d - )z<(cd
U

otherwise

Since the post is assumed to be of very snall radius, we model it as

a strip of width t, which is also small. Hence, only the x-directed current

on the strip is expected to be significant. In (12), the unknowns to be

evaluated are the coefficients A's and B's. From (7) and (12) it can be

seen that

I-
Cct Z A iP i(C)

i°

Z-l Ja (13)

where
0

Pi(a) - Tr Pi (z) exp (jaz) dz, 1 - 1, 2, ... , I

(-(c~d)

Po(a)  1' -(cfd) (z) exp (jaz) dz
0 2-. -(c+d+t) PO(z
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0

Q C)q.(z) exp, (jcaz) dz, Z 1, 2, .,L (4

Replacing (13) in (11), one obtains the expressions for the transform

domain functions f (ai) and G (ai):

n (k

a Li-aaa L=j

-2k
2y Cos cLn)

(I L
gja ax!- Iz A P (at) + (k2 -cx 2 ) Z B Q (a)

fl a Ui1l iI z I

(15)

Substituting these expressions in (2), (4) and (6) we obtain the final

results for the scattered fields in terms of the unknown coefficients

A's and B's. In order to f ind these unknown coef ficients, we enf orce the

boundary condition for the electric field on the septum and the strip,

which requires the total tangential component of the electric field to be

zero, i.e.,

aty 2 b16

Using (1), (2), and (15) in (16) we derive the following equations for A's

and B's.

[k2 - ])JE Aif -1 tan (Y ,a expC-jciz) dci

L r Yb
j tan (-i-) Q (ai) exp(-Jciz) dci



rn k mi
- e sin(-w) exp (+ J8 z), for TM modes.

(~2fli2 k rm 2rm

b _~ h sin(') exp (+ J~nz), for TE modes.

C

Eli A 2 tan (,)P()exp (Jaz) dci

1-0 1-.

L fC (k2a2 y b
+~ B 1 tan exp (-Jciz) dci

f: ie sin 2 exp (+ JB nm z), for TM modes

0for TE modes (17)

Now multiply both sides of (17) by the basis functions p Wz and qp.(W and

integrate over z to obtain the following equations.

2 n2 r2 10 y nb(k 2!~ Z A1i tan -=- i()P a)d

2i fm ta ~n (a)- 1~± P*,C(a) dci

a £ n ta ( z- p(r
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o r 8 2 (0 7
a am k Mir j nm

k2enM sin 2 i'-0,1,.. .1 for TM modes

- J-
2m-) h sin am -- i'-O,1,..,I for TE modesbk2 aim 2 P

flI ZA f Ata b)P (az) Q*,(a~) daa 1,0an (y-)n2 i .

L 22b

z 2. Y 2 X ~ (c)d

rr~ 2jk 2 e si F~' nm)
-4 U~Jm 2 Let' (nmJ 22-1,2,... ,L for III modes

0~ , 2-1,2,... ,L for TE modes (18)

The upper quantities within the square bracket in (18) are associated

with positive z incident modes, and the lower quantities are associated

with negative z incident modes. Both cases are included because we are

interested in the transmission coefficients as well as the reflection

coefficients. The integrals are evaluated by numerical integration, and

the-resulting system of linear equations is solved as usual for the

unknowns A's and B's by matrix inversion.
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The choice of basis functions, i.e., the p's and q's, is based on

previous experience and the consideration of the behavior of the

currents at the edges of the septum and the strip. Only two terms for

the expansion of the currents on the septum are retained, which are

believed to be adequate for this analysis. The basis functions and

their Fourier transforms are shown in Table 1.

Let us now consider the case of interest, namely, one in which the

incident fields are TEO modes. We have n-0, and the following relations:

y 2 -2 (19)

2
2 k 2 mw(8o. -(- (20)
Om beF

When n-0, (18) can be simplified to the following

y0b
2 tan( (w-)
2a A 2 P (c) P',(a) dct

iO -~ yOb £

2

4 sin )(  h I (Om . i'-O, 1, 2
mPiL (0Om)J

2 C Y0b
SBt f yo tan (--a--) Qt(1) Q*,(a) dci- 0, V'1,2 (21)

The equations for A's and B's are uncoupled. Therefore, A's and B's can

be solved for separately. The system of equations for B's is homogeneous,
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Table 1. BASIS FUNCTIONS IN SPATIAL AND SPECTRAL DOMAINS

Spatial Domain Spectral Domain

t 2z+c+d+ __22
2 t t t

po(z) exp[-( - Po(a) e-- [-Ja(c+d+2 exp[-( ]

2

pl(Z ) = 1 c
/1z z 1 c/2 2 P I (a) - T exp (-j') 2) 0 2

lz + C/2c/2 "

z + c/2
c/2 P(a) 4 exp (-j ca 12p2 (z) = - ( /

ql(z2 41-(c/2 p2)  4"2 c

2

z + c/2 1 (z + c/2 c
q2(z) c/2 c/2Q (a) - 4 exp(-2) 2 ('

2

J0 Jig and J2 are Bessel functions of the first kind and of order zero, one, and

two, correspondingly.
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which leads to the conclusion that all B's are zero. Consequently, there

are no components of the current in the z direction either in the septum

or the strip. In the following development, only the system of equations

for A's is investigated. Observe that the solution of A's involves an

inversion of a 3 x 3 matrix, which is an easy task for the computer. How-

ever, the evaluation of the matrix elements involves nine complex integrals

to be numerically integrated. Since there are singularities in these integrals,

we must examine the integrands carefully to make sure that the numerical

integration is applied correctly to give accurate results in spite of the

singularities. Therefore, it is useful to write the expressions appearing

in the integrands of (21) in an explicit manner as follows:

t2P "* W -t exp [-2 ( ta2j
0 0 167r ex4

2
ct ca ta c e

1 0 16 / 7 02 exp

P P* ct j ca t2 r4 d+t
0 1 6 1 (7) exp [-(j) exp [Ja( 2 + d + 2

)

poP* j ct a)ep[( ta. 2 ex [ja d + d) +

02 16/7 1 (T

22

P* - - .tj CLt c t~lPop._ t a exp e-xp [ -ja(i + d +

22
112 16 -YO 2422

P *2 ca 22
221 16 0 (T

plp , c 2 a(2

p2p 2 6 J1 (2) (2
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Note that P P*, P2Pf, etc. are not of interest here because the corresponding

integrands are odd and therefore the integrals involving them are identically

zero. Now observe that the integrand in (21) contains a simple pole located

at a - 801 on the path of integration for 0 < a , provided that the

wave number satisfies the following condition:

iT i<k< 3- (23)

This is the case when the incident field is the dominant, propagating mode

in the waveguide. Introduction of some loss in the medium clarifies the

position of the poles along the integration path, as shown in Fig. 2. Each

of the integrals in (21) can be written in the following form

JcF(a)da J01 F()d + 01F (a) d + F F(a) dc + -tj Res (8i

01 01 0
-rJ Res (a801) -0 F (a Fcd + f201F(ci)d

-- -201

+ 01 F(a)da + f F(a)da + irj Res (-801) - J Res (801)
J0 201

r-230
=j.01 F(_)d + J (01F(-2601 -a) + F(a)] dc

+ 1F(a) + F(2801 - a)] da
J0

+ F(a)da + wj Res (-001) - 1J Res (801)
01 0

01 (24)

L -- - ......
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Im(a)

a -PLANE

a Ro, Re (a)

Figure 2. Location of poles in the integration path of integrals in Eq. (21).
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In the above equation, a bar across the integral sign means principal value

integration. The method of foldover as shown makes the new integrand remain

bounded at the singularity of the old integrand; hence, this new integral

is easily evaluated by the numerical method. Also, since the integrand

goes to zero rapidly as a becomes large, the integration limit - can be

replaced by a large number, e.g., 14 801. It should be noted that if the

foldover method was not used, the integral could still be evaluated numer-

ically, in some cases, but the integration limit - must be replaced by a much

larger number which requires increased computer time and the results are less

accurate. The residues given in (24) are easily calculated and are given

by the general form

Res(± ) b ) P (.) , i, i" = 0,1 , 2
01 0a01

with Pi (a) Pil (a) given in (22).

(25)

Having discussed the evaluation of the matrix elements in detail, we can

proceed to solve the matrix equation (21) to obtain the A's. Having found

these A's, we compute f0 (a) from (15) and then calculate the scattered fields

from (2). For n-0, both Es and Es  0, and there is only E , which can be
z y

written as

FE' b~<yF j 0  ~~( sin (y0 (b~.)

LE (0 <y dcb ~ 2 yh cos 1KIb -0sin yo j
exo (-JcLz)

(26)
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r k .!kacz if k>IC, I
wherey =0

if k<ail

b
Let us evaluate (26) at y =-Y ,

0 -b
s b -jkbZ 0  2 O tan 2 P

ES(y 2) 4 ZiA0 - a)ep.az a(7

0 1- 2

2

Since the scattered fields on both sides of the beam equalizer are given by

(27), we can compute the transmission and reflection coefficients by

norm.alizing these scattered fields to the incident field given in (1).

The reflection coefficient R can be expressed as

E 
s

R = E i

x z<O

-r exp (j3 01lZ) 2
=- 4 z 2 Ai [2rj E Resi(;m)] (28)

01 ifO ml, 3 , 5 ,..

where the poles are given by

01 b m>_3 b

and the residues at these poles are given by

4 Pi(-B01) exp (jz0 1)
Resi(I) 2 (-01)
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Re ~tm es4x P i(jXm) exp (X mz)

with X. *4S ') -k2  X

P OiX ) = t exp [Xm(c+d+b~] exp t-im)2

X c

P (jXm) = - exp (m )jI m

and 109 1I1 are modified Bessel functions of the first kind. In deriving (28),

the integral in (27) has been evaluated by the residue theorem with the

contour closed in the upper half of the ca-plane. By the same token, the

transmission coefficient T can also be obtained, except this time the contour

is closed in the lower half of the as-plane.

T -x b

X z ;>0

-ecp (j S0 z) 2
4h 0 Z A [-27nj z Res (C) (29)
h01  1 m-1,3,5,..*

where the poles are given by

~1 01 b

-jA. k
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and the residues at these poles are given by

4 PJ(S01) exp (-J8 01z)Resi( I  f 2~
i-,l 2

RsRes.(-j 4 P i(-jxm ) exp (-XmZ)

Resi ) m2 (-Jxm) 3

with Xm )
b b

P (-Jx) = t exp [-X,(c+d + tfl exp )

Xc
P1 (-jXm) -- exp (-- -) I0 (S x)

P (-j, )- -cexp (-X"i-' f-jil (c

and I0, 1l are nodified Bessel functions of the first kind. Numerical

results indicate that minimum reflection and maximum transmission can be

achieved if the separation between the septum and the strip is 0.1

wavelength for the given dimensions in Fig. 1.

The radiation pattern of the waveguide feed with beam equalizer

can now be computed in the following manner. First, the aperture field

distribution in the plane containing the waveguide mouth is estimated by

a superposition of the waveguide mode field at this plane with each mode

being weighted by the corresponding transmission coefficients for the modes.

Since the transmission coefficients have been evaluated at a different

reference plane, it is necessary to refer these transmission coefficients

back to the aperture plane. This is done by multiplying the transmission
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coefficients by an appropriate correcting factor, which is a phase factor

for a propagating mode and is an exponential factor for an attenuated

mode. The radiation pattern is then obtained by the familiar Fourier

transform relation between the far field and the aperture field. For TEam

modes, the far fields are given by the following expressions [21:
1/2 2nm 8n

1112(iab) 2sine un n
Eaa 2k s n  [1 +-- cose + R (1 - - cosa)]

2X3 R k2  k
nm

[(!i2 sino) 2_ mr 2] (e,
a ( cos ) nm

E - u1/2 ( b2
U 1/2 Orab) 2sine sin cos

2 X3 R

(Cosa + + (Cos - ---B ] a nm(O,) (30)
S k (cs nm

with sin(-. sine co M +T) in( sine sine m)

'inm~e~ 2 2' 2 2

sine coso) - ( )J sine sin) -

exp { -j (kR-4 sine (a cos6 + b sin,) - (n+m+l) 2] }

A. 2

where (R,e,O) are the conventional right-handed spherical coordinates. The

total radiation pattern is then obtained by a superposition of these

individual mode patterns with the appropriate transmission coefficients

referenced at the aperture plane. Computed patterns and measured results

are presented in the next section.
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III. Computed Results

The performance of the square waveguide feed with beam equalizer is

evaluated over a frequency band of operation. The computed radiation

patterns in the E- and H-planes are presented in Figure 3. The beam

equalization is quite satisfactory over the entire band. The corresponding

aperture field distributions are shown in Figure 4. Looking at these

aperture distributions, one can explain how the beam equalizer works. It

goes as follows. The aperture distribution for the E-plane pattern

is uniform which gives a familiar (s.in x)/x type pattern. The H-plane

pattern is due to a cosine-taper type of aperture distribution if there is

no beam equalizer present. Hence, the beamwidth is larger thanf that of

the E-plane pattern for a square waveguide aperture. However, the intro-

duction of the beam equalizer forces the H-plane aperture field to vanish

at the center of the aperture, which makes the field distribution look more

uniform. Hence, the main lobe of the H-plane pattern narrows to achieve

the beam equalization effect in the E- and H-planes. The pattern is mainly

determined by the septum; the post is present for impedance matching. The

computed reflection coefficients over the frequency band are shown in

Table 2.

IV. Conclusions

A septum and an impedance matching post used as a beam equalizer in an

open-ended waveguide-feed for reflectors used in satellite communications

systems have been analyzed by using a spectral domain approach. The

computed radiation patterns in the E- and H-planes, as well as the

impedance match results, have been presented in the paper. The performance
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TABLE 2

REFLECTION COEFFICIENTS OVER THE FREQUENCY BAND

Frequency (GHz) Reflection coefficient r VSWR -

3.75 O.2729ZM30.25' 1.751

3.85 O.18791-134.90- 1.463

3.95 0. l071/4L2. 02' 1.240

4.05 0.0358/Z~k67.87- 1.074

4.15 0.0442/73.10- 1.092

....... ~~ .- v..
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of the beam equalizer over the entire band of operating frequency has

been evaluated. The results indicate that the E- and H-plane principally

polarized patterns are equalized extremely well over the entire frequency

band of operation and that the impedance matching is also satisfactory.
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